Header.gif
ОГЛАВЛЕНИЕ


Готовые шпаргалки! Всего 1103 комплектов по 298 предмету(ам)

Выбор и расчет подшипников качения

Пред. След. Главная

 

Определение сил, нагружающих подшипники

Определение радиальных реакций. Вал на подшипниках, установленных по одному в опоре, условно рассматривают как балку на шарнирно-подвижных опорах или как балку с одной шарнирно-подвижной и одной шарнирно-неподвижной опорой. Радиальную реакцию Fr подшипника считают приложенной к оси вала в точке пересечения с ней нормалей, проведенных через середины контактных площадок. Для радиальных подшипников эта точка расположена на середине ширины подшипника. Для радиально-упорных подшипников расстояние а между этой точкой и торцом подшипника может быть определено графически (рис. 25) или аналитически:
подшипники шариковые радиально-упорные однорядные

a=0,5[B+0,5(d+D))tgα];

подшипники роликовые конические однорядные

a=0,5(T+(d+D)е/з].

Ширину В кольца, монтажную высоту Т, коэффициент е осевого нагружения, угол

Рис.25.Расположение точки приложения
 радиальной реакции в радиально-упорных
 подшипниках

α контакта, а также диаметры d и D принимают по каталогу.
Реакции опор определяют из уравнения равновесия: сумма моментов внешних сил относительно рассматриваемой опоры и момента реакции в другой опоре равна нулю.

В ряде случаев направление вращения может быть переменным или неопределенным, причем изменение направления вращения может привести к изменению не только направления, но и значений реакций опор. При установке на концы валов соединительных муфт направление силы на вал от муфты неизвестно. В таких случаях при расчете реакций рассматривают наиболее опасный вариант. Возможная ошибка при этом приводит к повышению надежности.

Определение осевых реакций.
При установке вала на двух радиальных шариковых или радиально-упорных подшипниках нерегулируемых типов осевая сила Fa, нагружающая подшипник, равна внешней осевой силе FA, действующей на вал. Силу FA воспринимает тот подшипник, который ограничивает осевое перемещение вала под действием этой силы.

При определении осевых сил, нагружающих радиально-упорные подшипники регулируемых типов, следует учитывать осевые силы, возникающие под действием радиальной нагрузки Fr вследствие наклона контактных линий. Значения этих сил зависят от типа подшипника, угла контакта, значений радиальных сил, а также от того, как отрегулированы подшипники (см. рис. 22, а-в). Если подшипники собраны с большим зазором, то всю нагрузку воспринимает только один или два шарика или ролика (рис. 22, а). Осевая составляющая нагрузки при передаче ее одним телом качения равна Frtgα. Условия работы подшипников при таких больших зазорах неблагоприятны, и поэтому такие зазоры недопустимы. Обычно подшипники регулируют так, чтобы осевой зазор при установившемся температурном режиме был бы близок к нулю. В этом случае под действием радиальной нагрузки Fr находятся около половины тел качения (рис. 22, 6), а суммарная по всем нагруженным телам качения осевая составляющая из-за наклона контактных линий равна е' Fr и представляет собой минимальную осевую силу, которая должна действовать на радиально-упорный подшипник при заданной радиальной силе:

F a min = е' Fr                            (24)

  Для шариковых радиально-упорных подшипников с углом контакта а < 18°, F a min = е' Fr ,  где е' - коэффициент минимальной осевой нагрузки. В подшипниках такого типа действительный угол контакта отличается от начального и зависит от радиальной нагрузки Fr и базовой статической грузоподъемности Сor- Поэтому коэффициент е' определяют по формулам:
 для подшипников с углом контакта а = 12°

е'= 0,563(F r/Cor) 0,195;       (25)
 

 для подшипников с углом контакта а = 15°

е'= 0,579(F r/Cor) 0,136;       (26)
 

  Для шариковых радиально-упорных подшипников с углом контакта а 18°, е'=e  и F a min = е' Fr . Значения коэффициента е  осевого нагружения принимают по таблице 64. 
  Для конических роликовых:  е'= 0,83e   и F a min = 0,83 е Fr . Значения коэффициента е  принимают по каталогу.
 Под действием силы F a min наружное кольцо подшипника поджато к крышке корпуса. При отсутствии упора кольца в крышку оно будет отжато в осевом направлении, что приведет к нарушению нормальной работы подшипника. Для обеспечения нормальных условий работы осевая сила, нагружающая подшипник, должна быть не меньше минимальной: Fа  Fа min . Это условие должно быть выполнено для каждой опоры.
 Если Fа  Fа min, то более половины или все тела качения подшипника находятся под нагрузкой (см. рис. 22, в). Жесткость опоры с ростом осевой нагрузки увеличивается, поэтому в некоторых опорах, например в опорах шпинделей станков, применяют сборку с предварительным натягом.
 Для нормальной работы радиально-упорных подшипников необходимо, чтобы в каждой опоре осевая сила, нагружающая подшипник, была бы не меньше минимальной:


 Fа1  Fа1 min и  Fа2  Fа2 min

 Кроме того, должно быть выполнено условие равновесия вала - равенство нулю суммы всех осевых сил, действующих на вал. Например, для схемы
по рис. 26 имеем

FA + FA1 _ FA2= О.

Пример нахождения осевых реакций опор. В представленной на рис. 26 расчетной схеме обозначены: FА и FR - внешние осевая и радиальная нагрузки, действующие на вал; Fr1 и Fr2 - радиальные реакции опор; Fa1 и Fa2- осевые реакции опор.
 Решение может быть найдено при совместном удовлетворении трех уравнений:
 - из условия  Fа  Fа min в каждой опоре с учетом (24) следует:

Fа1  ≥ е'1 Fr1,     Fа2  ≥ е' Fr2,     
- из условия  равновесия вала под действием осевых сил следует:


FA + FA1 _ FA2= О.

Рис. 26. Схема нагружения вала и опор
 с радиально-упорными регулируемыми подшипниками


 
Для нахождения решения применяют метод попыток, предварительно осевую силу в одной, из опор принимая равной минимальной.
 1. Пусть, например, Fа1  = е'1 Fr1
 
Тогда из условия равновесия вала имеем

FA2=FA + Fа1= FA'1 Fr1

 Проверяем выполнение условия Fа  Fа min для второй опоры. Если при этом Fа2  е'2 Fr2 , то осевые силы найдены правильно. Если
 Fа2 < е'2Fr2 (что недопустимо), то нужно предпринять вторую попытку.
 2. Следует принять: Fа2 = е'2Fr2. Тогда из условия равновесия вала имеем

Fa1=Fa2 _ FA'2 Fr2 _ FA
 

 При этом условие Fа1  е'1 Fr1 будет обязательно выполнено.

Подбор подшипников

 Основной критерий работоспособности и порядок подбора подшипников зависит от значения частоты вращения кольца. Подшипники выбирают по статической грузоподъемности, если они воспринимают внешнюю нагрузку в неподвижном состоянии или при медленном вращении 
(n 10 об/мин). Подшипники, работающие при n > 10 об/мин, выбирают по динамической грузоподъемности, рассчитывая их ресурс при
требуемой надежности. Подшипники, работающие при частоте вращения n > 10 об/мин и резко переменной нагрузке, также следует проверять на статическую грузоподъемность.
 Предварительно назначают тип и схему установки подшипников (см. выше). Подбор подшипников выполняют для обеих опор вала. В некоторых изделиях, например в редукторах, для обеих опор применяют подшипники одного типа и одного размера. Тогда подбор выполняют по наиболее нагруженной опоре. Иногда из соотношения радиальных и осевых сил нельзя заранее с уверенностью сказать, какая опора более нагружена. Тогда расчет ведут параллельно для обеих опор до получения значений эквивалентных нагрузок, по которым и определяют более нагруженную опору.
 

Расчет подшипников на статическую грузоподъемность

 Значения базовой статической грузоподъемности для каждого подшипника заранее подсчитаны по формулам (1)-(4) и указаны в каталоге.
 При расчете на статическую грузоподъемность проверяют, не будет ли статическая эквивалентная нагрузка на подшипник превосходить статическую грузоподъемность, указанную в каталоге:

Рor ≤ Сor      или      Рoa ≤ Сoa  

 При выборе и расчете подшипников следует иметь в виду, что допустимая статическая эквивалентная нагрузка Рo может быть меньше, равна или больше базовой статической грузоподъемности. Значение этой нагрузки зависит от требований к плавности хода, малошумности и к моменту трения, а также и от действительной геометрии поверхностей контакта. Чем выше перечисленные требования, тем меньше значение допустимой статической эквивалентной нагрузки.
 Если не требуется высокая плавность хода, то возможно кратковременное повышение Рогоа) до 2Сor(2Соa). При повышенных требованиях к плавности хода, малошумности и к стабильности момента трения рекомендуют уменьшить допускаемую статическую эквивалентную нагрузку Рогоа) до Сor/Soоa/So). Коэффициент запаса SQ = 1,5 для упорных подшипников крановых крюков и подвесов; SQ =2 для приборных прецизионных поворотных устройств; SQ = 4 для ответственных тяжелонагруженных опор и поворотных кругов.
 Пример. Проверить пригодность подшипника 210 для следующих условий работы: вращение медленное (до 1 об/мин) эпизодическое при действии нагрузки с составляющими: радиальной Fr = 9000 Н и осевой Fa = 1600 Н; требования к малошумности и плавности хода - высокие.
 Решение. Базовая статическая радиальная грузоподъемность подшипника 210 по каталогу Сог = 19800 Н. Для шарикового радиального однорядного подшипника в соответствии с табл. 59 Xо = 0,6 и Yo = 0,5. Подставив в (5) и (6), получим

Por =  XоFr + YoFa = 0,6 * 9000 + 0,5 * 1600 = 6200 Н;

Рor, = Fr = 9000 Н.

 Принимаем наибольшее значение Рог= 9000 Н. Для шариковых подшипников с высокими требованиями к малошумности и плавности хода можно принять So = 2. Для таких условий работы должно выполняться соотношение Рor Сor / So . После подстановки получим:

9000 < 19800/2 = 9900.

 Следовательно, для данных условий работы подшипник 210 пригоден.

Расчет подшипников на заданный ресурс

 Исходные данные: F1, F2 -радиальная нагрузка (радиальная реакция) каждой опоры двухопорного вала, Н:  Fa-внешняя осевая сила, действующая на вал, Н; п - частота вращения кольца (как правило, частота вращения вала), об/мин; d -диаметр посадочной поверхности вала, который берут из компоновочной схемы, мм; L'sa, L'sah - требуемый ресурс при необходимой вероятности безотказной работы подшипника соответственно в млн. об. или в ч; режим нагружения; условия эксплуатации подшипникового узла (возможная перегрузка, рабочая температура и др.).
 Условия работы подшипников весьма разнообразны и могут различаться по величине кратковременных перегрузок, рабочей температуре, вращению внутреннего или наружного кольца и др. Влияние этих факторов на работоспособность подшипников учитывают введением в расчет эквивалентной динамической нагрузки (19) - (22) дополнительных коэффициентов.

Подбор подшипников качения
выполняют в такой последовательности.

1. Предварительно назначают тип и схему установки подшипников.
2. Для назначенного подшипника из каталога выписывают следующие данные:
 - для шариковых радиальных и радиально-упорных с углом контакта а < 18° значения базовых динамической Сг и статической Сor радиальных грузоподъемностей;
 - для шариковых радиально-упорных с углом контакта a  18° значение Сг, а из табл. 64 значения коэффициентов Х радиальной, Y осевой нагрузок, коэффициента е осевого нагружения:
 - для конических роликовых значения Сг, Y и е, а также принимают Х= 0,4 (табл. 66).
3. Из условия равновесия вала и условия ограничения минимального уровня осевых нагрузок на радиально-упорные подшипники определяют осевые силы Fa1 и Fa2.
4. Для подшипников шариковых радиальных, а также шариковых радиально-упорных с углом контакта а < 18° по табл. 64 в соответствии с имеющейся информацией находят значения X, Y и е в зависимости от

fo Faor    или    Fa / ( i z Dw2).

5. Сравнивают отношение Fa/ (VFr) с коэффициентом е и окончательно принимают значения коэффициентов Х и Y: при Fa/(VFr) e принимают
 Х = 1 и Y= 0, при Fa/(VFr)  > е для подшипников шариковых радиальных и радиально-упорных окончательно принимают записанные ранее (в п. 2 и 4) значения коэффициентов Х и Y.
 Здесь V - коэффициент вращения кольца: V = 1 при вращении внутреннего кольца подшипника относительно направления радиальной нагрузки и V= 1,2 при вращении наружного кольца.
 Для двухрядных конических роликовых подшипников значения X, Y и е - по табл. 66.
6. Вычисляют эквивалентную динамическую нагрузку:
 - радиальную для шариковых радиальных и шариковых или роликовых радиально-упорных

Рr = ( V X Fr + Y Fa ) КБ КТ;              (27)

- радиальную для роликовых радиальных подшипников:

Рr = Fr V КБ КТ;                               (28)

 - осевую для шариковых и роликовых упорных подшипников:

Ра = Fа V КБ КТ;                               (29)

- осевую для шариковых и роликовых упорно-радиальных подшипников

Ра = ( X Fr + Y Fa ) КБ КТ;              (30)

 Значение коэффициента КБ безопасности принимают по табл. 69, а температурного коэффициента Кт - в зависимости от рабочей температуры tраб подшипника:

tраб, °С ......100     125    150    175    200    225    250 
 Кт...............   1,0      1,05   1,10   1,15   1,25   1,35   1,4

69. Рекомендуемые значения коэффициентов безопасности

Характер нагрузки КБ Область применения

Спокойная нагрузка без толчков

1,0

Маломощные кинематические редукторы и приводы. Механизмы ручных кранов, блоков. Тали, кошки, ручные лебедки. Приводы управления

Легкие толчки; кратковременные перегрузки до 125% номинальной нагрузки

1,0-1,2

Прецизионные зубчатые передачи. Металлорежущие станки (кроме строгальных, долбежных и шлифовальных). Гироскопы. Механизмы подъема кранов. Электротали и монорельсовые тележки. Лебедки с механическим приводом. Электродвигатели малой и средней мощности. Легкие вентиляторы и воздуходувки

Умеренные толчки; вибрационная нагрузка; кратковременные перегрузки до 150% номинальной нагрузки

1,3-1,5

Зубчатые передачи. Редукторы всех типов. Механизмы передвижения крановых тележек и поворота кранов. Буксы рельсового подвижного состава. Механизмы поворота кранов

То же, в условиях повышенной надежности

1,5-1,8

Механизмы изменения вылета стрелы кранов. Шпиндели шлифовальных станков. Электрошпиндели

Нагрузки со значительными толчками и вибрациями; кратковременные перегрузки до 200% номинальной нагрузки

1,8-2,5

Зубчатые передачи. Дробилки и копры. Кривошипно-шатунные механизмы. Валки и адьюстаж прокатных станов. Мощные вентиляторы и эксгаустеры

Нагрузка с сильными ударами; кратковременные перегрузки до 300% 'номинальной нагрузки

2,5-3,0

Тяжелые ковочные машины. Лесопильные рамы. Рабочие роликовые конвейеры крупносортных станов, блюмингов и слябингов. Холодильное оборудование


 Для работы при повышенных температурах применяют подшипники со специальной стабилизирующей термообработкой или изготовленные из теплостойких сталей.

 Для подшипников, работающих при переменных режимах нагружения, задаваемых циклограммой нагрузок и соответствующими этим нагрузкам частотами вращения (рис. 27), вычисляют эквивалентную динамическую нагрузку при переменном режиме нагружения
 

PE = 3 Ö ((P13L1 + P23L2 + ... + Pn3Ln) / (L1 + L2 + ... +Ln))

 где Рi и Li - постоянная эквивалентная нагрузка (радиальная или осевая) на i-м режиме и продолжительность ее действия в млн. об. Если Li задана в ч- Lhi  то ее пересчитывают на млн. об. с учетом частоты вращения п об/мин:

Li = 60 ni Lhi  / 106.

 Если нагрузка на подшипник изменяется по линейному закону от Рmin  до  Рmax, то эквивалентная динамическая нагрузка

PE = ( Рmin + 2 Рmax ) / 3.

 

Рис. 27.Аппроксимация нагрузок и частот вращения

 Известно, что режимы работы машин с переменной нагрузкой сведены к шести типовым режимам нагружения (см. ГОСТ 21354-87. Передачи зубчатые цилиндрические эвольвентные внешнего зацепления. Расчет на прочность): 0 - постоянному; I -тяжелому; II - среднему равновероятному; III - среднему нормальному; IV - легкому; V - особо легкому.
 Для подшипников опор валов зубчатых передач, работающих при типовых режимах нагружения, расчеты удобно вести с помощью коэффициента эквивалентности KE:
 Режим работы     0        I         II         III         IV         V
  KE....................    1,0     0,8      0,63     0,56     0,5       0,4
 При этом по известным максимальным, длительно действующим силам Fr1max , Fr2max  ,FAmax ( соответствующим максимальному из длительно действующих вращающему моменту) находят эквивалентные нагрузки [3]:

Fr1= KE Fr1max ,   Fr2= KE Fr2max ,   FА= KE FАmax   

по которым в соответствии с пп. 2-6 (см. стр. 126) ведут расчет подшипников, как при постоянной нагрузке.
 7. Определяют скорректированный по уровню надежности и условиям применения расчетный ресурс подшипника, ч:

Lsah = a1a23(C/P)k 106/60n     (31)

где С - базовая динамическая грузоподъемность подшипника (радиальная Сг или осевая Са), Н; Р - эквивалентная динамическая нагрузка (радиальная Рг или осевая Ра, а при переменном режиме нагружения РЕr или РЕа), Н; k - показатель степени: k = 3 для шариковых и k = 10/3 для роликовых подшипников; n - частота вращения кольца, об/мин; а1 - коэффициент, корректирующий ресурс в зависимости от необходимой надежности (табл. 68); а23 коэффициент, характеризующий совместное влияние на ресурс особых свойств подшипника и условий его эксплуатации (табл. 70).

Базовый расчетный ресурс подтверждают результатами испытаний подшипников на специальных машинах и в определенных условиях, характеризуемых наличием гидродинамической пленки масла между контактирующими поверхностями колец и тел качения и отсутствием повышенных перекосов колец подшипника. В реальных условиях эксплуатации возможны отклонения от этих условий, что приближенно и оценивают коэффициентом а23.
При выборе коэффициента а23 различают следующие условия применения подшипника:
 1 - обычные (материал обычной плавки, наличие перекосов колец, отсутствие надежной гидродинамической пленки масла и наличие в нем инородных частиц);
 2 - характеризующиеся наличием упругой гидродинамической пленки масла в контакте колец и тел качения (параметр Λ 2,5); отсутствие повышенных перекосов в узле; сталь обычного изготовления;
 3 - то же, что в п.2, но кольца и тела качения изготовлены из стали электрошлакового или вакуумно-дугового переплава.

70. Рекомендуемые значения коэффициента аз

Подшипники Значения коэффициента а23 для условий применения
1 2 3

Шариковые (кроме сферических)

0,7 ... 0,8 1,0 1,2 ... 1,4

Роликовые с цилиндрическими роликами, шариковые сферические двухрядные

0,5 ... 0,6 0,8 1,0 ... 1,2

Роликовые конические

0,6 ... 0,7 0,9 1,1 ... 1,3

Роликовые сферические двухрядные

0,3 ... 0,4 0,6 0,8 ... 1,0


71. Рекомендуемые значения расчетных ресурсов для машин и оборудования
 

Машины, оборудование и условия их эксплуатации Ресурс, ч

 Приборы и аппараты, используемые периодически (демонстрационная аппаратура, бытовая техника, приборы)

300 ... 3000 

 Механизмы, используемые в течение коротких периодов времени (сельскохозяйственные машины, подъемные краны в сборочных цехах, легкие конвейеры, строительные машины и механизмы, электрический ручной инструмент)

3000 ...8000

 Ответственные механизмы, работающие с перерывами (вспомогательные механизмы на силовых станциях, конвейеры для поточного производства, лифты, нечасто используемые металлообрабатывающие станки)

8000 ... 12000

 Машины для односменной работы с неполной нагрузкой (стационарные электродвигатели, редукторы общепромышленного назначения)

10000...25000 

 Машины, работающие с полной нагрузкой в одну смену (машины общего машиностроения, подъемные краны, вентиляторы, распределительные валы, конвейеры, полиграфическое оборудование)

~25000

 Машины для круглосуточного использования (компрессоры, шахтные подъемники, стационарные электромашины, судовые приводы, текстильное оборудование)

40000

 Непрерывно работающие машины с высокой нагрузкой (оборудование бумагоделательных фабрик, энергетические установки, шахтные насосы, оборудование торговых морских судов, карусельные печи)

~100000


 Здесь /\ - параметр режима смазки - характеризует гидродинамический режим смазки подшипника (относительную тол-шину смазочной пленки). Расчет /\  приведен, например, в [1, 2].
 Формулы расчета ресурса справедливы при частотах вращения свыше 10 об/мин до предельных по каталогу, а также если Рг (или  Рa), а при переменных нагрузках Рr max  (или Pa maxне  превышают 0,5Сг (или O,5 Ca).
 8. Оценивают пригодность намеченного типоразмера подшипника. Подшипник пригоден, если расчетный ресурс больше или равен требуемому:

Lsah  ≥  L 'sah

В некоторых случаях в одной опоре устанавливают два одинаковых радиальных или радиально-упорных однорядных подшипника, образующих один подшипниковый узел. При этом пару подшипников рассматривают как один двухрядный подшипник. При определении ресурса по формуле
 п. 7 вместо Сг подставляют базовую динамическую радиальную грузоподъемность Сr сум комплекта из двух подшипников: для шарикоподшипников Сr сум = 1,625 Сr, для роликоподшипников С r сум = 1,714 Cr. Базовая статическая радиальная грузоподъемность такого комплекта равна удвоенной номинальной грузоподъемности одного однорядного подшипника С or сум = 2Сог.

При определении эквивалентной нагрузки Рr значения коэффициентов Х и Y принимают как для двухрядных подшипников: для шарикоподшипников по табл. 64; для роликоподшипников - по табл. 66.
 Рекомендуемые значения ресурсов подшипников различных машин приведены в табл. 71.

Пример 1. Подобрать подшипники качения для опор выходного вала цилиндрического зубчатого редуктора (рис. 28). Частота вращения вала
 n = 120 об/мин. Требуемый ресурс при вероятности безотказной работы 90%: L '10ah = 25000 ч. Диаметр посадочных поверхностей вала
  d = 60 мм. Максимальные, длительно действующие силы: Fr1max =6400 Н,  Fr2max =6400 Н,  FAmax = 2900 H. Режим  нагружения - II (средний равновероятный). Возможны кратковременные перегрузки до 150% номинальной нагрузки. Условия применения подшипников - обычные.
Ожидаемая температура работы tраб = 50 °С.
 Решение. 1. Для переменного типового режима нагружения II коэффициент эквивалентности КE, = 0,63 (см. п.6).
 Вычисляем эквивалентные нагрузки, приводя переменный режим нагружения к эквивалентному постоянному:

Fr1 = КE Fr1max = 0,63 * 6400 =4032   Н;



 

Рис. 28. Расчетная схема к примеру 1


Fr2 = КE Fr2max = 0,63 * 6400 =4032   Н;

FA = КE FA max = 0,63 * 2900 =1827 Н;

 2. Предварительно назначаем шариковые радиальные подшипники легкой серии 212. Схема установки подшипников: (см. рис. 24) - обе опоры фиксирующие; каждая фиксирует вал в одном направлении.
 3. Для принятых подшипников по каталогу находим: Сг = 52000 Н, Сог = 31000 Н, d = 60 мм, D = 110 мм, Dw = 15,88 мм.
 4. Для радиальных шарикоподшипников из условия равновесия вала следует: Fa1 = FA = 1827 Н,  Fa2 = 0. Дальнейший расчет выполняем для более нагруженного подшипника опоры 1.
 5. По табл. 58 для отношения Dw cos а / Dpw = 15,88 cos 0° / 85 = 0,19 находим значение fо = 14,2 ; здесь Dpw = 0,5(d + D) = 0,5(60 + 110) = 85 мм. Далее по табл. 64 определяем значение коэффициента е для отношения fоFa1/Cог = 14,2 х 1827 / 31000 = 0,837 : е = 0,27.
 6. Отношение Fa / Fr = 1827 / 4032 = 0,453 , что больше е = 0,27. По табл. 64 для отношения fоFa1/Cог =0,837 принимаем Х = 0,56, Y = 1,64.
 7. Эквивалентная динамическая радиальная нагрузка по формуле (27) при V = 1 (вращение внутреннего кольца); KБ = 1,4 (см. табл. 69);
  Кт = 1 (tраб < 100 °С)

Рr = (1 * 0,56 * 4032 + 1,64 * 1827) 1,4 * 1 = 7356 Н.

 8. Расчетный скорректированный ресурс подшипника по формуле (31) при а1 = 1 (вероятность безотказной работы 90%, табл. 68), a23 = 0,7 (обычные условия применения, табл. 70), k = 3 (шариковый подшипник)

L10ah = a1a23 * ( Cг / Pr)k* 106/60n =1*0,7 (52000/7356)3*(106/60*120)=34344 ч.


 
9. Так как расчетный ресурс больше требуемого: L10ah  > L'10ah (34344 > 25000), то предварительно назначенный подшипник 212 пригоден. При требуемом ресурсе надежность выше 90%.

Пример 2. Подобрать подшипники для опор вала редуктора привода цепного конвейера (рис. 29). Частота вращения вала п = 200 об/мин. Требуемый ресурс при вероятности безотказной работы 90%: L'10ah = 20000 ч. Диаметр посадочных поверхностей вала d = 45 мм. Максимальные, длительно действующие силы: Fr1max =9820 Н, Fr2max  =8040 Н, FA max = 3210 Н. Режим нагружения - III (средний нормальный). Возможны кратковременные перегрузки до 150% номинальной нагрузки. Условия применения подшипников обычные. Ожидаемая температура работы
 tраб = 45 °С.

Решение.
1. Для переменного типового режима нагружения III коэффициент эквивалентности КЕ = 0,56 (см. п.6).
Вычисляем эквивалентные нагрузки, приводя переменный режим нагружения к эквивалентному постоянному:

Fr1 = КЕ Fr1max = 0,56 9820 = 5499 Н;
Fr2 = КЕ Fr2max = 0,56
8040 = 4502 Н;
FA = КЕ FA max = 0,56
3210 = 1798  Н;

2. Предварительно назначаем конические роликовые подшипники легкой серии - 7209А. Схема установки подшипников: (см. рис. 24) - обе опоры фиксирующие: каждая фиксирует вал в одном направлении.
3. Для принятых подшипников из каталога находим: Сг = 62700 Н, е = 0,4, Y =1,5.
4. Минимально необходимые для нормальной работы радиально-упорных подшипников осевые силы:

 Fa1 min =0,83e Fr1=0,830,4  5499 = 1826  H;
Fa2 min =0,83e Fr2=0,83
0,4  4502 = 1495  H;

Рис. 29. Расчетная схема к примеру 2
 

 Находим осевые силы, нагружающие подшипники.
 Примем Fa1 = Fa1 min =1826 H; тогда из условия равновесия вала следует: Fa2 =Fa1 FA = 1826 + 1798 = 3624 Н, что больше Fa2 min= 1495 Н, следовательно, осевые реакции опор найдены правильно.
 5. Отношение Fa1/ Fr1 = 1826 / 5499 = 0,33, что меньше е = 0,4. Тогда для опоры 1: Х= 1, Y=0.
Отношение  Fa2/ Fr2  = 3624 / 4502 = 0,805, что больше е = 0,4. Тогда для опоры 2:  Х= 0,4, Y= 1,5.
 6. Эквивалентная динамическая радиальная нагрузка для подшипников при V = 1; КБ = 1,4 (см. табл. 69) и КT = 1 (tраб < 100 °С) в опорах 1 и 2:

Pr1 = Fr1КБ КT = 54991,4 1 = 7699   Н;

Pr2=(VXFr2 + YFa2Б КT  = (10,44502 + 1,53624) 1,41 = 10132  Н.

 7. Для подшипника более нагруженной опоры 2 вычисляем по формуле (31) расчетный скорректированный ресурс при а1 = 1 (вероятность безотказной работы 90%, табл. 68), a23 = 0,6 (обычные условия применения, табл. 70) и k = 10/3 (роликовый подшипник)

L10ah = a1a23(Cr/Pr)k  106/60n = 1 · 0,6 (62700/10132)10/3  106/(60 · 200) =21622 ч.

8. Так как расчетный ресурс больше требуемого: L10ah  > L'10ah (21622 > 20000), то предварительно назначенный подшипник 7209А пригоден. При требуемом ресурсе надежность несколько выше 90%.

Пример 3. Подобрать подшипники для опор вала червяка (рис. 30). Частота вращения вала 920 об/мин. Требуемый ресурс при вероятности безотказной работы 90%:  L'10ah=2000 ч. Диаметр посадочных поверхностей вала d = 30 мм. Максимальные, длительно действующие силы: 
Fr1max  = 1000 Н, Fr2max = 1200 Н,  FA max = 2200 Н.

Рис. 30. Расчетная схема к примеру 3

Режим нагружения - 0 (постоянный). Возможны кратковременные перегрузки до 150% номинальной нагрузки. Условия применения подшипников - обычные. Ожидаемая температура работы tраб = 65 °С.
  Решение. 1. Для типового режима нагружения 0 коэффициент эквивалентности KE=1,0.
  Вычисляем эквивалентные нагрузки:

F1 = KEFr1 max = 1,0 · 1000 = 1000 H; F r2 = = KEFr2 max =1,0 · 1200=1200 Н;  FA= KEFA max = 1,0· 2200 = 2200 Н.

  2. Предварительно назначаем шариковые радиально-упорные подшипники легкой серии - 36206, угол контакта а = 12 °. Схема установки подшипников: (см. рис. 24) - обе опоры фиксирующие; каждая фиксирует вал в одном направлении.
  3. Для принятых подшипников из каталога находим: Сг = 22000 Н, Сor= 12000 Н, d = 30 мм, D = 62 мм, Dw = 9,53 мм.
  4. Минимально необходимые для нормальной работы радиально-упорных подшипников осевые силы в соответствии с формулами (24), (25):
для опоры 1

e'= 0,563( Fr / Cor )0,195 =0,563 ( 1000 / 1200 ) = 0347;

F1min = e'Fr1 =  0,347· 1000=347 Н, для опоры 2

e'= 0,563( Fr / Cor )0,195 = 0,563(1200/ 12000)0,195 = 0,359;

Fa2 min=e'Fr2=0359.1200 =431 Н.

  Находим осевые силы, нагружающие подшипники.
  Примем Fa1=Fa1min=347 H, тогда и3 условия равновесия вала следует: Fa2 = Fa1 +FA = 347 + 2200 = 2547 Н, что больше
Fa2min =431 H, следовательно, осевые реакции опор найдены правильно.
  5. Дальнейший расчет выполняем для более нагруженной опоры 2. По табл. 68 для отношения DW cosα / DpW = 9,53 x cos 12°/46 = 0,2 находим значение f0=14, здесь DpW =0,5(d + D) = 0,5(30 + 62) = 46. Далее по табл. 64 определяем значение коэффициента е для отношения
f0iFa2 /Ccor=14•1•2547 / 12000 = 2,97: е = 0,49 (определено линейным интерполированием для промежуточных значений "относительной осевой нагрузки" и угла контакта). Отношение Fa2 / Fr2 = 2547 / 1200 = 2,12 ,что больше е = 0,49. Тогда для опоры 2 (табл. 64): Х= 0,45; Y= 1,11 (определено линейным интерполированием для значений "относительной осевой нагрузки" 2,97 и угла контакта 12°).
  6. Эквивалентная динамическая радиальная нагрузка по формуле (27) при V=1; KБ=1,З (см. табл. 69) и KT=1 (tраб <  100 °С)

Pr2=(VXFr2 + YFa2)KБКТ (1 • 0,45 • 1200 + 1,11 • 2200) 1,3 • 1 = 3877 Н.

  7. Расчетный скорректированный ресурс при а1 = 1 (вероятность безотказной работы 90%, табл. 68), а23 = 0,7 (обычные условия применения, табл. 70) и k = 3 (шариковый подшипник)

L10ah = a1a23(Cr/Pr)k  106/60n = 1 · 0,7 (22000/3877)3  106/(60 · 920) =2317 ч.

  8. Так как расчетный ресурс больше требуемого: L10ah > L'10ah (2317 > 2000), то предварительно назначенный подшипник 36206 пригоден. При требуемом ресурсе надежность несколько выше 90%.

Пример 4.
Вычислить скорректированный расчетный ресурс роликовых конических подшипников 1027308А фиксирующей опоры вала червяка (рис. 31). Частота вращения вала n = 970 об/мин. Вероятность безотказной работы 95%. Максимальные, длительно действующие силы: 
Frmax = 3500 Н, FAmax = 5400 Н. Режим нагружения - I (тяжелый). Возможны кратковременные перегрузки до 150% номинальной нагрузки. Условия применения подшипников - обычные. Ожидаемая температура работы tраб = 85 °С.
  Решение. 1. Для переменного типового режима нагружения I коэффициент эквивалентности КЕ = 0,8 (см. п.6).
  Вычисляем эквивалентные нагрузки, приводя переменный режим нагружения к эквивалентному постоянному:

Fr = KEFrmax = 0,83500 = 2800 Н;

FA = KEFrmax = 0,85400 = 4320 Н;

  2. Для роликоподшипника конического с большим углом конусности - условное обозначение 1027308А - по каталогу Сг = 69300 Н, е = 0,83.
  3. Подшипниковый узел фиксирующей опоры червяка образуют два одинаковых роликовых радиально-упорных конических подшипника, которые рассматривают как один двухрядный подшипник, нагруженный силами Fr и Fa = FA. Для комплекта из двух роликоподшипников имеем 
Сrсум = 1,714Сr= 1,714 • 69300 = 118780 Н.
 4. Отношение Fa / Fr = 4320/2800 =1,543, что больше e=0,83. Определим значение угла контакта а (табл. 66):

а = arctg(e / 1,5) = arctg(0,83 / 1,5) = 28,96 °.

 Тогда для двухрядного роликового радиально-упорного подшипника: 

X=0,67;

У= 0,67ctg a = 0,67 ctg 28,96 °= 1,21.

 5. Эквивалентная динамическая радиальная нагрузка по формуле (27) при V= 1; KБ= 1,4;  КТ = 1

Pr = (VXFr + YFa ) KБ КТ = (10,672800 +1,214320) 1,41 = 9945 Н.

 6. Расчетный скорректированный ресурс при а1 = 0,62 (вероятность безотказной работы 95%, табл. 68), a23 = 0,6 (табл. 70) и k = 10/3 (роликовый подшипник)

Рис. 31. Расчетная схема к примеру 4

L10ah = a1a23(Cr ум/Pr)k  106/60n = 0,62 · 0,6 (118780/9945)10/3  106/(60 · 970) =24688 ч.  

Расчет допустимой осевой нагрузки для роликовых радиальных подшипников

Роликоподшипники с короткими цилиндрическими роликами, как правило, применяют только для восприятия радиальных сил. Способность роликовых радиальных подшипников выдерживать осевые нагрузки зависит от конструкции подшипника и качества их исполнения. 
Подшипники типов 12000, 42000, 62000 и 92000 помимо радиальной могут также воспринимать бортиками колец и торцами роликов относительно небольшие осевые нагрузки, которые в определенных допустимых пределах не вызывают снижения расчетного ресурса, при вычислении которого учитывают лишь радиальные силы. Это обусловлено тем, что радиальные силы воспринимают образующие роликов, контактирующие с дорожками качения колец, тогда как осевые силы действуют на борта колец и торцовые поверхности роликов.
При этом важную роль имеют характер нагрузки, частота вращения и смазывание подшипника.

Допустимую осевую нагрузку
[Fa] можно определить по формулам:
 - для подшипников серий диаметров 1, 2,3 и 4

[Fa] = kACor [ 1,75 - 0,125 kBn ( D - d )];
 

 - для подшипников серий диаметров 5 и 6

[Fa] =kACor [ 1,16 - 0,08 kBn ( D - d )];

где kA и kB - коэффициенты, значения которых приведены в табл. 72 и 73; Cor  - статическая грузоподъемность, Н; n - наибольшая частота вращения, об/мин; D и d -соответственно наружный диаметр и диаметр отверстия подшипника.
 При малых частотах вращения допустимы случайные кратковременные нагрузки большей величины, но не выше 40% статической грузоподъемности подшипника.

72. Значения коэффициента kA
 

Условия работы подшипника, смазочный материал (примеры применения) kA

Постоянная осевая сила при высокой частоте вращения и высокой температуре, высокотемпературные масла (не рекомендуется применять роликоподшипники с цилиндрическими роликами)

0

Переменная осевая сила и умеренная температура, пластичный смазочный материал - тяговые электродвигатели

0,02

Непродолжительная осевая сила и низкая температура, жидкий смазочный материал - коробки передач автомобилей:
         главная передача
         вал шестерни заднего хода



0,1
0,2

Случайная осевая сила и низкая температура, пластичный смазочный материал - блоки, электроcтали,
 кран-балки

0,2



73. Значения коэффициента kB

Серия подшипника по диаметру (третья цифра справа в условном обозначении) kB
1,2,5 8,5 • 10-5
3,6 7    • 10-5
4 6    • 10-5

 

 



Справочник конструктора - Все что нужно любому конструктору! ©2008